
HSA QUEUEING

HOT CHIPS TUTORIAL - AUGUST 2013

IAN BRATT

PRINCIPAL ENGINEER

ARM

HSA QUEUEING, MOTIVATION

MOTIVATION (TODAY’S PICTURE)

© Copyright 2012 HSA Foundation. All Rights Reserved. 3

Application OS GPU

Transfer

buffer to GPU
Copy/Map

Memory

Queue Job

Schedule Job

Start Job

Finish Job

Schedule

Application

Get Buffer

Copy/Map

Memory

HSA QUEUEING: REQUIREMENTS

REQUIREMENTS

 Requires four mechanisms to enable lower overhead job dispatch.

 Shared Virtual Memory

 System Coherency

 Signaling

 User mode queueing

© Copyright 2012 HSA Foundation. All Rights Reserved. 5

SHARED VIRTUAL MEMORY

PHYSICAL MEMORY

SHARED VIRTUAL MEMORY (TODAY)

 Multiple Virtual memory address spaces

© Copyright 2012 HSA Foundation. All Rights Reserved. 7

CPU0 GPU

VIRTUAL MEMORY1

PHYSICAL MEMORY

VA1->PA1 VA2->PA1

VIRTUAL MEMORY2

PHYSICAL MEMORY

SHARED VIRTUAL MEMORY (HSA)

 Common Virtual Memory for all HSA agents

© Copyright 2012 HSA Foundation. All Rights Reserved. 8

CPU0 GPU

VIRTUAL MEMORY

PHYSICAL MEMORY

VA->PA VA->PA

SHARED VIRTUAL MEMORY

 Advantages

 No mapping tricks, no copying back-and-forth between different PA

addresses

 Send pointers (not data) back and forth between HSA agents.

 Implications

 Common Page Tables (and common interpretation of architectural

semantics such as shareability, protection, etc).

 Common mechanisms for address translation (and servicing

address translation faults)

 Concept of a process address space (PASID) to allow multiple, per

process virtual address spaces within the system.

© Copyright 2012 HSA Foundation. All Rights Reserved. 9

GETTING THERE …

© Copyright 2012 HSA Foundation. All Rights Reserved. 10

Application OS GPU

Transfer

buffer to GPU
Copy/Map

Memory

Queue Job

Schedule Job

Start Job

Finish Job

Schedule

Application

Get Buffer

Copy/Map

Memory

SHARED VIRTUAL MEMORY

 Specifics

 Minimum supported VA width is 48b for 64b systems, and 32b for

32b systems.

 HSA agents may reserve VA ranges for internal use via system

software.

 All HSA agents other than the host unit must use the lowest

privelege level

 If present, read/write access flags for page tables must be

maintained by all agents.

 Read/write permissions apply to all HSA agents, equally.

© Copyright 2012 HSA Foundation. All Rights Reserved. 11

CACHE COHERENCY

CACHE COHERENCY DOMAINS (1/3)

 Data accesses to global memory segment from all HSA Agents shall be

coherent without the need for explicit cache maintenance.

© Copyright 2012 HSA Foundation. All Rights Reserved. 13

CACHE COHERENCY DOMAINS (2/3)

 Advantages

 Composability

 Reduced SW complexity when communicating between agents

 Lower barrier to entry when porting software

 Implications

 Hardware coherency support between all HSA agents

 Can take many forms

 Stand alone Snoop Filters / Directories

 Combined L3/Filters

 Snoop-based systems (no filter)

 Etc …

© Copyright 2012 HSA Foundation. All Rights Reserved. 14

GETTING CLOSER …

© Copyright 2012 HSA Foundation. All Rights Reserved. 15

Application OS GPU

Transfer

buffer to GPU
Copy/Map

Memory

Queue Job

Schedule Job

Start Job

Finish Job

Schedule

Application

Get Buffer

Copy/Map

Memory

CACHE COHERENCY DOMAINS (3/3)

 Specifics

 No requirement for instruction memory accesses to be

coherent

 Only applies to the Primary memory type.

 No requirement for HSA agents to maintain coherency

to any memory location where the HSA agents do not

specify the same memory attributes

 Read-only image data is required to remain static during

the execution of an HSA kernel.

No double mapping (via different attributes) in order

to modify. Must remain static

© Copyright 2012 HSA Foundation. All Rights Reserved. 16

SIGNALING

SIGNALING (1/3)

 HSA agents support the ability to use signaling objects

 All creation/destruction signaling objects occurs via HSA

runtime APIs

Object creation/destruction

 From an HSA Agent you can directly accessing

signaling objects.

Signaling a signal object (this will wake up HSA

agents waiting upon the object)

Query current object

Wait on the current object (various conditions

supported).

© Copyright 2012 HSA Foundation. All Rights Reserved. 18

SIGNALING (2/3)

 Advantages

 Enables asynchronous interrupts between HSA agents,

without involving the kernel

 Common idiom for work offload

 Low power waiting

 Implications

 Runtime support required

 Commonly implemented on top of cache coherency

flows

© Copyright 2012 HSA Foundation. All Rights Reserved. 19

ALMOST THERE…

© Copyright 2012 HSA Foundation. All Rights Reserved. 20

Application OS GPU

Transfer

buffer to GPU
Copy/Map

Memory

Queue Job

Schedule Job

Start Job

Finish Job

Schedule

Application

Get Buffer

Copy/Map

Memory

SIGNALING (3/3)

 Specifics

 Only supported within a PASID

 Supported wait conditions are =, !=, < and >=

 Wait operations may return sporadically (no guarantee

against false positives)

Programmer must test.

 Wait operations have a maximum duration before

returning.

 The HSAIL atomic operations are supported on signal

objects.

 Signal objects are opaque

© Copyright 2012 HSA Foundation. All Rights Reserved. 21

USER MODE QUEUEING

USER MODE QUEUEING (1/3)

 User mode Queueing

 Enables user space applications to directly, without OS intervention, enqueue jobs

(“Dispatch Packets”) for HSA agents.

 Dispatch packet is a job of work

 Support for multiple queues per PASID

 Multiple threads/agents within a PASID may enqueue Packets in the same Queue.

 Dependency mechanisms created for ensuring ordering between packets.

© Copyright 2012 HSA Foundation. All Rights Reserved. 23

USER MODE QUEUEING (2/3)

 Advantages

 Avoid involving the kernel/driver when dispatching work for an Agent.

 Lower latency job dispatch enables finer granularity of offload

 Standard memory protection mechanisms may be used to protect communication

with the consuming agent.

 Implications

 Packet formats/fields are Architected – standard across vendors!

 Guaranteed backward compatibility

 Packets are enqueued/dequeued via an Architected protocol (all via memory

accesses and signalling)

 More on this later……

© Copyright 2012 HSA Foundation. All Rights Reserved. 24

SUCCESS!

© Copyright 2012 HSA Foundation. All Rights Reserved. 25

Application OS GPU

Transfer

buffer to GPU
Copy/Map

Memory

Queue Job

Schedule Job

Start Job

Finish Job

Schedule

Application

Get Buffer

Copy/Map

Memory

SUCCESS!

© Copyright 2012 HSA Foundation. All Rights Reserved. 26

Application OS GPU

Queue Job

Start Job

Finish Job

ARCHITECTED QUEUEING

LANGUAGE, QUEUES

ARCHITECTED QUEUEING LANGUAGE

 HSA Queues look just like standard

shared memory queues, supporting

multi-producer, single-consumer

 Support is allowed for single-producer,

single-consumer

 Queues consist of storage, read/write

indices, ID, etc.

 Queues are created/destroyed via calls

to the HSA runtime

 “Packets” are placed in queues directly

from user mode, via an architected

protocol

 Packet format is architected

© Copyright 2012 HSA Foundation. All Rights Reserved. 28

Producer Producer

Consumer

Read Index

Write Index

Storage in

coherent, shared

memory

Packets

ARCHITECTED QUEUEING LANGUAGE

 Once a packet is enqueued, the producer signals the doorbell

 Consumers are not required to wait on the doorbell – the consumer could instead be

polling.

 The doorbell is not the synchronization mechanism (the shared memory updates

ensure the synchronization).

 Packets are read and dispatched for execution from the queue in order, but

may complete in any order.

 There is no guarantee that more than one packet will be processed in parallel at a

time

 There may be many queues. A single agent may also consume from several

queues.

 A packet processing agent may also enqueue packets.

© Copyright 2012 HSA Foundation. All Rights Reserved. 29

POTENTIAL MULTI-PRODUCER ALGORITHM

// Read the current queue write offset

tmp_WriteOffset = WriteOffset;

// wait until the queue is no longer full.

while(tmp_WriteOffset == ReadOffset + Size) {}

// Atomically bump the WriteOffset

if (WriteOffset.compare_exchange_strong(tmp_WriteOffset, tmp_WriteOffset + 1,

 std::memory_order_acquire){

 // calculate index

 uint32_t index = tmp_WriteOffset & (Size -1);

 // copy over the packet, the format field is INVALID

 BaseAddress[index] = pkt;

 // Update format field with release semantics

 BaseAddress[index].hdr.format.store(DISPATCH, std::memory_order_release);

 // ring doorbell, with release semantics (could also amortize over multiple packets)

 hsa_ring_doorbell(tmp_WriteOffset+1);

 }

© Copyright 2012 HSA Foundation. All Rights Reserved. 30

POTENTIAL CONSUMER ALGORITHM

// spin while empty (could also perform low-power wait on doorbell)

while (BaseAddress[ReadOffset & (Size - 1)].hdr.format == INVALID) { }

// calculate the index

uint32_t index = ReadOffset & (Size - 1);

// copy over the packet

pkt = BaseAddress[index];

// set the format field to invalid

BaseAddress[index].hdr.format.store(INVALID, std::memory_order_relaxed);

// Update the readoffset

ReadOffset.store(ReadOffset + 1, std::memory_order_release);

© Copyright 2012 HSA Foundation. All Rights Reserved. 31

ARCHITECTED QUEUEING

LANGUAGE, PACKETS

DISPATCH PACKET

© Copyright 2012 HSA Foundation. All Rights Reserved. 33

 Packets come in two main types (Dispatch and Barrier), with architected

layouts

 Dispatch packet is the most common type of packet

 Contains

 Pointer to the kernel

 Pointer to the arguments

 WorkGroupSize (x,y,z)

 gridSize(x,y,z)

 And more……

 Packets contain an additional “barrier” flag. When the barrier flag is set, no

other packets will be launched until all previously launched packets from this

queue have completed.

DISPATCH PACKET

© Copyright 2012 HSA Foundation. All Rights Reserved. 34

Offset Format Field Name Description

0 uint32_t

format:8 AQL_FORMAT: 0=INVALID, 1=DISPATCH, 2=DEPEND, others reserved

barrier:1
If set then processing of packet will only begin when all preceding packets are

complete.

acquireFenceScope:2
Determines the scope and type of the memory fence operation applied before the

job is dispatched.

releaseFenceScope:2
Determines the scope and type of the memory fence operation applied after

kernel completion but before the job is completed.

invalidateInstructionCache:1 Acquire fence additionally applies to any instruction cache(s).

invalidateROImageCache:1 Acquire fence additionally applies to any read-only image cache(s).

dimensions:2 Number of dimensions specified in gridSize. Valid values are 1, 2, or 3.

reserved:15

4 uint16_t workgroupSize.x x dimension of work-group (measured in work-items).

6 uint16_t workgroupSize.y y dimension of work-group (measured in work-items).

8 uint16_t workgroupSize.z z dimension of work-group (measured in work-items).

10 uint16_t reserved2

12 uint32_t gridSize.x x dimension of grid (measured in work-items).

16 uint32_t gridSize.y y dimension of grid (measured in work-items).

20 uint32_t gridSize.z z dimension of grid (measured in work-items).

24 uint32_t privateSegmentSizeBytes Total size in bytes of private memory allocation request (per work-item).

28 uint32_t groupSegmentSizeBytes Total size in bytes of group memory allocation request (per work-group).

32 uint64_t kernelObjectAddress
Address of an object in memory that includes an implementation-defined

executable ISA image for the kernel.

40 uint64_t kernargAddress Address of memory containing kernel arguments.

48 uint64_t reserved3

56 uint64_t completionSignal Address of HSA signaling object used to indicate completion of the job.

BARRIER PACKET

 Used for specifying dependences between packets

 HSA will not launch any further packets from this queue until the barrier packet

signal conditions are met

 Used for specifying dependences on packets dispatched from any queue.

 Execution phase completes only when all of the dependent signals (up to five) have

been signaled (with the value of 0).

 Or if an error has occurred in one of the packets upon which we have a

dependence.

© Copyright 2012 HSA Foundation. All Rights Reserved. 35

BARRIER PACKET

© Copyright 2012 HSA Foundation. All Rights Reserved. 36

Offset Format Field Name Description

0 uint32_t

format:8
AQL_FORMAT: 0=INVALID, 1=DISPATCH, 2=DEPEND, others

reserved

barrier:1
If set then processing of packet will only begin when all preceding

packets are complete.

acquireFenceScope:2
Determines the scope and type of the memory fence operation applied

before the job is dispatched.

releaseFenceScope:2
Determines the scope and type of the memory fence operation applied

after kernel completion but before the job is completed.

invalidateInstructionCache:1 Acquire fence additionally applies to any instruction cache(s).

invalidateROImageCache:1 Acquire fence additionally applies to any read-only image cache(s).

dimensions:2 Number of dimensions specified in gridSize. Valid values are 1, 2, or 3.

reserved:15

4 uint32_t reserved2

8 uint64_t depSignal0

Address of dependent signaling objects to be evaluated by the packet

processor.

16 uint64_t depSignal1

24 uint64_t depSignal2

32 uint64_t depSignal3

40 uint64_t depSignal4

48 uint64_t reserved3

56 uint64_t completionSignal Address of HSA signaling object used to indicate completion of the job.

DEPENDENCES

 A user may never assume more than one packet is being executed by an HSA

agent at a time.

 Implications:

 Packets can’t poll on shared memory values which will be set by packets issued

from other queues, unless the user has ensured the proper ordering.

 To ensure all previous packets from a queue have been completed, use the Barrier

bit.

 To ensure specific packets from any queue have completed, use the Barrier packet.

© Copyright 2012 HSA Foundation. All Rights Reserved. 37

HSA QUEUEING, PACKET EXECUTION

PACKET EXECUTION

 Launch phase

 Initiated when launch conditions are met

 All preceeding packets in the queue must have exited launch phase

 If the barrier bit in the packet header is set, then all preceding packets in the

queue must have exited completion phase

 Active phase

 Execute the packet

 Barrier packets remain in Active phase until conditions are met.

 Completion phase

 First step is memory release fence – make results visible.

 CompletionSignal field is then signaled with a decrementing atomic.

© Copyright 2012 HSA Foundation. All Rights Reserved. 39

PACKET EXECUTION

© Copyright 2012 HSA Foundation. All Rights Reserved. 40

Pkt1

Launch

Pkt2

Launch

Pkt1

Execute

Pkt2

Execute

Pkt1

Complete

Pkt3

Launch (barrier=1)

Pkt2

Complete

Pkt3

Execute

Time

Pkt3 stays in Launch

phase until all packets

have completed.

PUTTING IT ALL TOGETHER (FFT)

© Copyright 2012 HSA Foundation. All Rights Reserved. 41

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Barrier Barrier

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

Time

PUTTING IT ALL TOGETHER

© Copyright 2012 HSA Foundation. All Rights Reserved. 42

AQL Pseudo Code

// Send the packets to do the first stage.

aql_dispatch(pkt1);

aql_dispatch(pkt2);

// Send the next two packets, setting the barrier bit so we

//know packets 1 &2 will be complete before 3 and 4 are

//launched.

aql_dispatch_with _barrier_bit(pkt3);

aql_dispatch(pkt4);

// Same as above (make sure 3 & 4 are done before issuing 5

//& 6)

aql_dispatch_with_barrier_bit(pkt5);

aql_dispatch(pkt6);

// This packet will notify us when 5 & 6 are complete)

aql_dispatch_with_barrier_bit(finish_pkt);

QUESTIONS?

© Copyright 2012 HSA Foundation. All Rights Reserved. 43

