HSA QUEUEING
HOT CHIPS TUTORIAL - AUGUST 2013

IAN BRATT
PRINCIPAL ENGINEER
ARM

HSA QUEUEING, MOTIVATION

.\
L\
A 3\ \\

FOUNDATION

.\
B\
2@

I
n
P

MOTIVATION (TODAY’S PICTURE)

Transfer
buffer to GPU ———
|

Schedule Job -\
v
Finish Job
Application
Copy/Map
Memory

© Copyright 2012 HSA Foundation. All Rights Reserved.

Y
L\
A 3\ \\

FOUNDATION

HSA QUEUEING: REQUIREMENTS

REQUIREMENTS il

¢ Requires four mechanisms to enable lower overhead job dispatch.
¢ Shared Virtual Memory
+ System Coherency
+ Signaling
+ User mode queueing

© Copyright 2012 HSA Foundation. All Rights Reserved. 5

SHARED VIRTUAL MEMORY

.\
L\
A 3\ \\

FOUNDATION

SHARED VIRTUAL MEMORY (TODAY) HS2A

+ Multiple Virtual memory address spaces

B
T S

_—

VIR'JI'U%\L [\/II%I\/IOR 1 \/IIRTU%\L I\/IEI\/I?R 2

CPUO GPU

VA1l->PAl VA2->PA1l

© Copyright 2012 HSA Foundation. All Rights Reserved.

SHARED VIRTUAL MEMORY (HSA) HISA:

¢ Common Virtual Memory for all HSA agents
-L \/ l A
VSICAL MEMORY
» V. A v
”".."V

J _ J l VIR U%LMRF \ |

CPUO GPU

VA->PA VA->PA

© Copyright 2012 HSA Foundation. All Rights Reserved.

SHARED VIRTUAL MEMORY R4

¢ Advantages

+ No mapping tricks, no copying back-and-forth between different PA
addresses

+ Send pointers (not data) back and forth between HSA agents.

+ Implications

+ Common Page Tables (and common interpretation of architectural
semantics such as shareability, protection, etc).

+ Common mechanisms for address translation (and servicing
address translation faults)

o Concept of a process address space (PASID) to allow multiple, per
process virtual address spaces within the system.

© Copyright 2012 HSA Foundation. All Rights Reserved. 9

£\
B\
L\

U
>

GETTING THERE ... HSA

buffer to GPU ———

] viemoiy

Schedule Job -\
v
Finish Job
Application

Copy/Map
vemoiy

© Copyright 2012 HSA Foundation. All Rights Reserved.

SHARED VIRTUAL MEMORY R4

+ Specifics

¢ Minimum supported VA width is 48b for 64b systems, and 32b for
32b systems.

¢ HSA agents may reserve VA ranges for internal use via system
software.

¢ All HSA agents other than the host unit must use the lowest
privelege level

o If present, read/write access flags for page tables must be
maintained by all agents.

+ Read/write permissions apply to all HSA agents, equally.

© Copyright 2012 HSA Foundation. All Rights Reserved.

CACHE COHERENCY

Al

CACHE COHERENCY DOMAINS (1/3) HSA

"W
P

+ Data accesses to global memory segment from all HSA Agents shall be
coherent without the need for explicit cache maintenance.

© Copyright 2012 HSA Foundation. All Rights Reserved.

Al

CACHE COHERENCY DOMAINS (2/3) HSA

u\W
P

+ Advantages
¢ Composability
¢ Reduced SW complexity when communicating between agents
o Lower barrier to entry when porting software

+ Implications
+ Hardware coherency support between all HSA agents
+ Can take many forms
+ Stand alone Snoop Filters / Directories
¢ Combined L3/Filters
¢ Snoop-based systems (no filter)
¢ EtC ...

© Copyright 2012 HSA Foundation. All Rights Reserved.

£\
B\
L\

U
>

GETTING CLOSER ... HSA

Transfer

bufierto G™!)
' Copy/May

viemoiy

Schedule Job -\

¥

Finish Job

m e

Copy/Map
vemoiy

© Copyright 2012 HSA Foundation. All Rights Reserved.

18
g F

CACHE COHERENCY DOMAINS (3/3) Hl24
¢ Specifics
+ No requirement for instruction memory accesses to be
coherent

+ Only applies to the Primary memory type.

+ No requirement for HSA agents to maintain coherency
to any memory location where the HSA agents do not
specify the same memory attributes

+ Read-only image data is required to remain static during
the execution of an HSA kernel.

+ No double mapping (via different attributes) in order
to modify. Must remain static

© Copyright 2012 HSA Foundation. All Rights Reserved.

SIGNALING

SIGNALING (1/3) HS A

¢ HSA agents support the ability to use signaling objects

¢ All creation/destruction signaling objects occurs via HSA
runtime APIs

+ ODbject creation/destruction

¢ From an HSA Agent you can directly accessing
sighaling objects.
¢ Signaling a signal object (this will wake up HSA
agents waiting upon the object)

+ Query current object

+ Wait on the current object (various conditions
supported).

© Copyright 2012 HSA Foundation. All Rights Reserved.

SIGNALING (2/3) HSA

+ Advantages

¢ Enables asynchronous interrupts between HSA agents,
without involving the kernel

¢ Common idiom for work offload
¢ Low power waiting

+ Implications
+ Runtime support required

¢ Commonly implemented on top of cache coherency
flows

© Copyright 2012 HSA Foundation. All Rights Reserved.

ALMOST THERE... HSA

Transfer

bufierto G™!)
' Copy/May

viemoiy

Schedule Job -\
¥

Finish Job

Copy/Map
vemoiy

© Copyright 2012 HSA Foundation. All Rights Reserved.

SIGNALING (3/3) HS AL
¢ Specifics

¢ Only supported within a PASID

¢ Supported wait conditions are =, !=, < and >=

+ Wait operations may return sporadically (no guarantee
against false positives)

+ Programmer must test.

+ Wait operations have a maximum duration before
returning.

+ The HSAIL atomic operations are supported on signal
objects.

+ Signal objects are opaque

© Copyright 2012 HSA Foundation. All Rights Reserved.

USER MODE QUEUEING

.\
L\
A 3\ \\

FOUNDATION

"\
B\
L\

U
>

USER MODE QUEUEING (1/3) HSA

¢ User mode Queueing

+ Enables user space applications to directly, without OS intervention, enqueue jobs
(“Dispatch Packets”) for HSA agents.

+ Dispatch packet is a job of work
+ Support for multiple queues per PASID
+ Multiple threads/agents within a PASID may enqueue Packets in the same Queue.
¢ Dependency mechanisms created for ensuring ordering between packets.

© Copyright 2012 HSA Foundation. All Rights Reserved.

"\
B\
L\

U
>

USER MODE QUEUEING (2/3) HSA

+ Advantages
+ Avoid involving the kernel/driver when dispatching work for an Agent.
+ Lower latency job dispatch enables finer granularity of offload

+ Standard memory protection mechanisms may be used to protect communication
with the consuming agent.

¢ Implications
o Packet formats/fields are Architected — standard across vendors!
+ Guaranteed backward compatibility

+ Packets are enqueued/dequeued via an Architected protocol (all via memory
accesses and signalling)

¢ More on this later......

© Copyright 2012 HSA Foundation. All Rights Reserved.

£\
B\
L\

U
>

SUCCESS! HSA.

Transfer

bufierto G™!)
: Copy/Mz5p

vemoiy'

Schec = Job -\

¥
Finish Job

Copy/Map
vMemoiy'

© Copyright 2012 HSA Foundation. All Rights Reserved.

SUCCESS!

Y
R\
] \\

L
U
>

FOUNDATION

— S S

\

|

\

¥

/

© Copyright 2012 HSA Foundation. All Rights Reserved.

ARCHITECTED QUEUEING
LANGUAGE, QUEUES

.\
L\
A 3\ \\

FOUNDATION

U
>

ARCHITECTED QUEUEING LANGUAGE H24A

¢ HSA Queues look just like standard
shared memory queues, supporting
multi-producer, single-consumer

+ Support is allowed for single-producer,
single-consumer

T
Producer

Producer

Write Index
+ Queues consist of storage, read/write |)

< Packet > -
indices, ID, etc. ackets

[re— Read Index

¢ Queues are created/destroyed via calls
to the HSA runtime

\

¢ “Packets” are placed in queues directly Storage in

from user mode, via an architected frfgri:)er;t shared
protocol

¢ Packet format is architected

© Copyright 2012 HSA Foundation. All Rights Reserved.

Al

ARCHITECTED QUEUEING LANGUAGE HSA

u\W
P

¢ Once a packet is enqueued, the producer signals the doorbell

¢ Consumers are not required to wait on the doorbell — the consumer could instead be
polling.

¢ The doorbell is not the synchronization mechanism (the shared memory updates
ensure the synchronization).

+ Packets are read and dispatched for execution from the queue in order, but
may complete in any order.

+ There is no guarantee that more than one packet will be processed in parallel at a
time

¢ There may be many queues. A single agent may also consume from several
gueues.

¢ A packet processing agent may also enqueue packets.

© Copyright 2012 HSA Foundation. All Rights Reserved.

Al

POTENTIAL MULTI-PRODUCER ALGORITHM HSA.

/l Read the current queue write offset
tmp_WriteOffset = WriteOffset;

um
ALY

/[wait until the queue is no longer full.
while(tmp_WriteOffset == ReadOffset + Size) {}

/I Atomically bump the WriteOffset
if (WriteOffset.compare_exchange_strong(tmp_WriteOffset, tmp_WriteOffset + 1,
std::memory_order_acquire){

/l calculate index
uint32_t index = tmp_WriteOffset & (Size -1);

Il copy over the packet, the format field is INVALID
BaseAddress[index] = pkt;

I/l Update format field with release semantics
BaseAddress[index].hdr.format.store(DISPATCH, std::memory_order_release);

/l ring doorbell, with release semantics (could also amortize over multiple packets)
hsa_ring_doorbell(tmp_WriteOffset+1);

}

© Copyright 2012 HSA Foundation. All Rights Reserved.

Al

POTENTIAL CONSUMER ALGORITHM H24A

u\R
P

I/ spin while empty (could also perform low-power wait on doorbell)
while (BaseAddress[ReadOffset & (Size - 1)].hdr.format == INVALID) { }

/[calculate the index
uint32_t index = ReadOffset & (Size - 1);

I/ copy over the packet
pkt = BaseAddress[index];

Il set the format field to invalid
BaseAddress|[index].hdr.format.store(INVALID, std::memory_order_relaxed);

// Update the readoffset
ReadOffset.store(ReadOffset + 1, std::memory_order_release);

© Copyright 2012 HSA Foundation. All Rights Reserved.

ARCHITECTED QUEUEING
LANGUAGE, PACKETS

.\
L\
A 3\ \\

FOUNDATION

"\
B\
L\

U
>

DISPATCH PACKET HSA.

¢ Packets come in two main types (Dispatch and Barrier), with architected
layouts

+ Dispatch packet is the most common type of packet

+ Contains

+ Pointer to the kernel
Pointer to the arguments
WorkGroupSize (x,Y,2)
gridSize(x,y,z)

* & o o

And more......

+ Packets contain an additional “barrier” flag. When the barrier flag is set, no
other packets will be launched until all previously launched packets from this
gueue have completed.

© Copyright 2012 HSA Foundation. All Rights Reserved.

Al

DISPATCH PACKET HSA.

u\R
P

format:8 AQL_FORMAT: O=INVALID, 1=DISPATCH, 2=DEPEND, others reserved
barrier-1 If set then processing of packet will only begin when all preceding packets are
' complete.

Determines the scope and type of the memory fence operation applied before the
job is dispatched.

Determines the scope and type of the memory fence operation applied after
kernel completion but before the job is completed.

invalidatelnstructionCache:1 Acquire fence additionally applies to any instruction cache(s).
invalidateROImageCache:1 Acquire fence additionally applies to any read-only image cache(s).

acquireFenceScope:2

uint32_t releaseFenceScope:2

dimensions:2 Number of dimensions specified in gridSize. Valid values are 1, 2, or 3.
reserved:15

uintl6_t workgroupSize.x x dimension of work-group (measured in work-items).

B vint16 t workgroupSize.y y dimension of work-group (measured in work-items).

B vint16 t workgroupSize.z z dimension of work-group (measured in work-items).

uintlé t reserved2

uint32_t gridSize.x x dimension of grid (measured in work-items).

uint32_t gridSize.y y dimension of grid (measured in work-items).

uint32_t gridSize.z z dimension of grid (measured in work-items).

uint32_t privateSegmentSizeBytes Total size in bytes of private memory allocation request (per work-item).

uint32_t groupSegmentSizeBytes Total size in bytes of group memory allocation request (per work-group).

Lint64_t kermelObjectAddress Address of an object in memory that includes an implementation-defined

executable ISA image for the kernel.

uinté4_t kernargAddress Address of memory containing kernel arguments.

uinté4_t reserved3

uinté4_t completionSignal Address of HSA signaling object used to indicate completion of the job.

© Copyright 2012 HSA Foundation. All Rights Reserved.

"\
B\
L\

U
>

BARRIER PACKET HSA.

+ Used for specifying dependences between packets

o HSA will not launch any further packets from this queue until the barrier packet
signal conditions are met

+ Used for specifying dependences on packets dispatched from any queue.

+ Execution phase completes only when all of the dependent signals (up to five) have
been signaled (with the value of 0).

+ Orif an error has occurred in one of the packets upon which we have a
dependence.

© Copyright 2012 HSA Foundation. All Rights Reserved.

BARRIER PACKET

Al

HS

FOUNDATION

"W
A

uint32_t
uint32_t
“ uint64_t
uinté4_t
uint64._t
uinté4_t
uinté4_t
uint64_t
uinté4 _t

format:8

barrier:1

acquireFenceScope:2

releaseFenceScope:2

invalidatelnstructionCache:1
invalidateROImageCache:1

dimensions:2

reserved:15
reserved2
depSignal0
depSignall
depSignal2
depSignal3
depSignal4
reserved3

completionSignal

AQL_FORMAT: 0=INVALID, 1=DISPATCH, 2=DEPEND, others
reserved

If set then processing of packet will only begin when all preceding
packets are complete.

Determines the scope and type of the memory fence operation applied
before the job is dispatched.

Determines the scope and type of the memory fence operation applied
after kernel completion but before the job is completed.

Acquire fence additionally applies to any instruction cache(s).
Acquire fence additionally applies to any read-only image cache(s).

Number of dimensions specified in gridSize. Valid values are 1, 2, or 3.

Address of dependent signaling objects to be evaluated by the packet
processor.

Address of HSA signaling object used to indicate completion of the job.

© Copyright 2012 HSA Foundation. All Rights Reserved.

"\
B\
L\

U
>

DEPENDENCES HSA.

¢ A user may never assume more than one packet is being executed by an HSA
agent at a time.

¢ Implications:

+ Packets can’t poll on shared memory values which will be set by packets issued
from other queues, unless the user has ensured the proper ordering.

+ To ensure all previous packets from a queue have been completed, use the Barrier
bit.
+ To ensure specific packets from any queue have completed, use the Barrier packet.

© Copyright 2012 HSA Foundation. All Rights Reserved.

.\
L\
A 3\ \\

FOUNDATION

HSA QUEUEING, PACKET EXECUTION

"\
B\
L\

L
U
>

PACKET EXECUTION

¢ Launch phase
+ Initiated when launch conditions are met
+ All preceeding packets in the queue must have exited launch phase

+ If the barrier bit in the packet header is set, then all preceding packets in the
gueue must have exited completion phase

+ Active phase
+ Execute the packet
+ Barrier packets remain in Active phase until conditions are met.

¢ Completion phase
o First step is memory release fence — make results visible.
o CompletionSignal field is then signaled with a decrementing atomic.

© Copyright 2012 HSA Foundation. All Rights Reserved.

PACKET EXECUTION

"\
B\
L\

L
U
>

FOUNDATION

Pkt3 stays in Launch
phase until all packets
have completed.

Pkt1 Pktl Pkt1
Launch Execute Complete
Pkt2 Pkt2 Pkt2
Launch Execute Complete
Pkt3 Pkt3
Launch (barrier=1) Execute

Time

© Copyright 2012 HSA Foundation. All Rights Reserved.

PUTTING IT ALL TOGETHER (FFT) HSA

Packet 1 Packet 3 Packet 5

X[0] @—

X[1] @—

X[2] @—
X[3] @—

X[4] ©—

X[5] @
X[6] @
X[7] @

Packet 2 T Packet 4 T Packet 6

Barrier Barrier
Time

© Copyright 2012 HSA Foundation. All Rights Reserved.

£\
B\
L\

PUTTING IT ALL TOGETHER il

AQL Pseudo Code

// Send the packets to do the first stage.
agl_dispatch(pktl);
agl_dispatch(pkt2);

I/l Send the next two packets, setting the barrier bit so we
Ilknow packets 1 &2 will be complete before 3 and 4 are
//launched.

aqgl_dispatch_with _barrier_bit(pkt3);

aql_dispatch(pkt4);

/[Same as above (make sure 3 & 4 are done before issuing 5
/1& 6)

aqgl_dispatch_with_barrier_bit(pkt5);

aql_dispatch(pkt6);

Il This packet will notify us when 5 & 6 are complete)
aql_dispatch_with_barrier_bit(finish_pkt);

© Copyright 2012 HSA Foundation. All Rights Reserved.

QUESTIONS? HSA.

© Copyright 2012 HSA Foundation. All Rights Reserved.

