
HSA QUEUEING

HOT CHIPS TUTORIAL - AUGUST 2013

IAN BRATT

PRINCIPAL ENGINEER

ARM

HSA QUEUEING, MOTIVATION

MOTIVATION (TODAY’S PICTURE)

© Copyright 2012 HSA Foundation. All Rights Reserved. 3

Application OS GPU

Transfer

buffer to GPU
Copy/Map

Memory

Queue Job

Schedule Job

Start Job

Finish Job

Schedule

Application

Get Buffer

Copy/Map

Memory

HSA QUEUEING: REQUIREMENTS

REQUIREMENTS

 Requires four mechanisms to enable lower overhead job dispatch.

 Shared Virtual Memory

 System Coherency

 Signaling

 User mode queueing

© Copyright 2012 HSA Foundation. All Rights Reserved. 5

SHARED VIRTUAL MEMORY

PHYSICAL MEMORY

SHARED VIRTUAL MEMORY (TODAY)

 Multiple Virtual memory address spaces

© Copyright 2012 HSA Foundation. All Rights Reserved. 7

CPU0 GPU

VIRTUAL MEMORY1

PHYSICAL MEMORY

VA1->PA1 VA2->PA1

VIRTUAL MEMORY2

PHYSICAL MEMORY

SHARED VIRTUAL MEMORY (HSA)

 Common Virtual Memory for all HSA agents

© Copyright 2012 HSA Foundation. All Rights Reserved. 8

CPU0 GPU

VIRTUAL MEMORY

PHYSICAL MEMORY

VA->PA VA->PA

SHARED VIRTUAL MEMORY

 Advantages

 No mapping tricks, no copying back-and-forth between different PA

addresses

 Send pointers (not data) back and forth between HSA agents.

 Implications

 Common Page Tables (and common interpretation of architectural

semantics such as shareability, protection, etc).

 Common mechanisms for address translation (and servicing

address translation faults)

 Concept of a process address space (PASID) to allow multiple, per

process virtual address spaces within the system.

© Copyright 2012 HSA Foundation. All Rights Reserved. 9

GETTING THERE …

© Copyright 2012 HSA Foundation. All Rights Reserved. 10

Application OS GPU

Transfer

buffer to GPU
Copy/Map

Memory

Queue Job

Schedule Job

Start Job

Finish Job

Schedule

Application

Get Buffer

Copy/Map

Memory

SHARED VIRTUAL MEMORY

 Specifics

 Minimum supported VA width is 48b for 64b systems, and 32b for

32b systems.

 HSA agents may reserve VA ranges for internal use via system

software.

 All HSA agents other than the host unit must use the lowest

privelege level

 If present, read/write access flags for page tables must be

maintained by all agents.

 Read/write permissions apply to all HSA agents, equally.

© Copyright 2012 HSA Foundation. All Rights Reserved. 11

CACHE COHERENCY

CACHE COHERENCY DOMAINS (1/3)

 Data accesses to global memory segment from all HSA Agents shall be

coherent without the need for explicit cache maintenance.

© Copyright 2012 HSA Foundation. All Rights Reserved. 13

CACHE COHERENCY DOMAINS (2/3)

 Advantages

 Composability

 Reduced SW complexity when communicating between agents

 Lower barrier to entry when porting software

 Implications

 Hardware coherency support between all HSA agents

 Can take many forms

 Stand alone Snoop Filters / Directories

 Combined L3/Filters

 Snoop-based systems (no filter)

 Etc …

© Copyright 2012 HSA Foundation. All Rights Reserved. 14

GETTING CLOSER …

© Copyright 2012 HSA Foundation. All Rights Reserved. 15

Application OS GPU

Transfer

buffer to GPU
Copy/Map

Memory

Queue Job

Schedule Job

Start Job

Finish Job

Schedule

Application

Get Buffer

Copy/Map

Memory

CACHE COHERENCY DOMAINS (3/3)

 Specifics

 No requirement for instruction memory accesses to be

coherent

 Only applies to the Primary memory type.

 No requirement for HSA agents to maintain coherency

to any memory location where the HSA agents do not

specify the same memory attributes

 Read-only image data is required to remain static during

the execution of an HSA kernel.

No double mapping (via different attributes) in order

to modify. Must remain static

© Copyright 2012 HSA Foundation. All Rights Reserved. 16

SIGNALING

SIGNALING (1/3)

 HSA agents support the ability to use signaling objects

 All creation/destruction signaling objects occurs via HSA

runtime APIs

Object creation/destruction

 From an HSA Agent you can directly accessing

signaling objects.

Signaling a signal object (this will wake up HSA

agents waiting upon the object)

Query current object

Wait on the current object (various conditions

supported).

© Copyright 2012 HSA Foundation. All Rights Reserved. 18

SIGNALING (2/3)

 Advantages

 Enables asynchronous interrupts between HSA agents,

without involving the kernel

 Common idiom for work offload

 Low power waiting

 Implications

 Runtime support required

 Commonly implemented on top of cache coherency

flows

© Copyright 2012 HSA Foundation. All Rights Reserved. 19

ALMOST THERE…

© Copyright 2012 HSA Foundation. All Rights Reserved. 20

Application OS GPU

Transfer

buffer to GPU
Copy/Map

Memory

Queue Job

Schedule Job

Start Job

Finish Job

Schedule

Application

Get Buffer

Copy/Map

Memory

SIGNALING (3/3)

 Specifics

 Only supported within a PASID

 Supported wait conditions are =, !=, < and >=

 Wait operations may return sporadically (no guarantee

against false positives)

Programmer must test.

 Wait operations have a maximum duration before

returning.

 The HSAIL atomic operations are supported on signal

objects.

 Signal objects are opaque

© Copyright 2012 HSA Foundation. All Rights Reserved. 21

USER MODE QUEUEING

USER MODE QUEUEING (1/3)

 User mode Queueing

 Enables user space applications to directly, without OS intervention, enqueue jobs

(“Dispatch Packets”) for HSA agents.

 Dispatch packet is a job of work

 Support for multiple queues per PASID

 Multiple threads/agents within a PASID may enqueue Packets in the same Queue.

 Dependency mechanisms created for ensuring ordering between packets.

© Copyright 2012 HSA Foundation. All Rights Reserved. 23

USER MODE QUEUEING (2/3)

 Advantages

 Avoid involving the kernel/driver when dispatching work for an Agent.

 Lower latency job dispatch enables finer granularity of offload

 Standard memory protection mechanisms may be used to protect communication

with the consuming agent.

 Implications

 Packet formats/fields are Architected – standard across vendors!

 Guaranteed backward compatibility

 Packets are enqueued/dequeued via an Architected protocol (all via memory

accesses and signalling)

 More on this later……

© Copyright 2012 HSA Foundation. All Rights Reserved. 24

SUCCESS!

© Copyright 2012 HSA Foundation. All Rights Reserved. 25

Application OS GPU

Transfer

buffer to GPU
Copy/Map

Memory

Queue Job

Schedule Job

Start Job

Finish Job

Schedule

Application

Get Buffer

Copy/Map

Memory

SUCCESS!

© Copyright 2012 HSA Foundation. All Rights Reserved. 26

Application OS GPU

Queue Job

Start Job

Finish Job

ARCHITECTED QUEUEING

LANGUAGE, QUEUES

ARCHITECTED QUEUEING LANGUAGE

 HSA Queues look just like standard

shared memory queues, supporting

multi-producer, single-consumer

 Support is allowed for single-producer,

single-consumer

 Queues consist of storage, read/write

indices, ID, etc.

 Queues are created/destroyed via calls

to the HSA runtime

 “Packets” are placed in queues directly

from user mode, via an architected

protocol

 Packet format is architected

© Copyright 2012 HSA Foundation. All Rights Reserved. 28

Producer Producer

Consumer

Read Index

Write Index

Storage in

coherent, shared

memory

Packets

ARCHITECTED QUEUEING LANGUAGE

 Once a packet is enqueued, the producer signals the doorbell

 Consumers are not required to wait on the doorbell – the consumer could instead be

polling.

 The doorbell is not the synchronization mechanism (the shared memory updates

ensure the synchronization).

 Packets are read and dispatched for execution from the queue in order, but

may complete in any order.

 There is no guarantee that more than one packet will be processed in parallel at a

time

 There may be many queues. A single agent may also consume from several

queues.

 A packet processing agent may also enqueue packets.

© Copyright 2012 HSA Foundation. All Rights Reserved. 29

POTENTIAL MULTI-PRODUCER ALGORITHM

// Read the current queue write offset

tmp_WriteOffset = WriteOffset;

// wait until the queue is no longer full.

while(tmp_WriteOffset == ReadOffset + Size) {}

// Atomically bump the WriteOffset

if (WriteOffset.compare_exchange_strong(tmp_WriteOffset, tmp_WriteOffset + 1,

 std::memory_order_acquire){

 // calculate index

 uint32_t index = tmp_WriteOffset & (Size -1);

 // copy over the packet, the format field is INVALID

 BaseAddress[index] = pkt;

 // Update format field with release semantics

 BaseAddress[index].hdr.format.store(DISPATCH, std::memory_order_release);

 // ring doorbell, with release semantics (could also amortize over multiple packets)

 hsa_ring_doorbell(tmp_WriteOffset+1);

 }

© Copyright 2012 HSA Foundation. All Rights Reserved. 30

POTENTIAL CONSUMER ALGORITHM

// spin while empty (could also perform low-power wait on doorbell)

while (BaseAddress[ReadOffset & (Size - 1)].hdr.format == INVALID) { }

// calculate the index

uint32_t index = ReadOffset & (Size - 1);

// copy over the packet

pkt = BaseAddress[index];

// set the format field to invalid

BaseAddress[index].hdr.format.store(INVALID, std::memory_order_relaxed);

// Update the readoffset

ReadOffset.store(ReadOffset + 1, std::memory_order_release);

© Copyright 2012 HSA Foundation. All Rights Reserved. 31

ARCHITECTED QUEUEING

LANGUAGE, PACKETS

DISPATCH PACKET

© Copyright 2012 HSA Foundation. All Rights Reserved. 33

 Packets come in two main types (Dispatch and Barrier), with architected

layouts

 Dispatch packet is the most common type of packet

 Contains

 Pointer to the kernel

 Pointer to the arguments

 WorkGroupSize (x,y,z)

 gridSize(x,y,z)

 And more……

 Packets contain an additional “barrier” flag. When the barrier flag is set, no

other packets will be launched until all previously launched packets from this

queue have completed.

DISPATCH PACKET

© Copyright 2012 HSA Foundation. All Rights Reserved. 34

Offset Format Field Name Description

0 uint32_t

format:8 AQL_FORMAT: 0=INVALID, 1=DISPATCH, 2=DEPEND, others reserved

barrier:1
If set then processing of packet will only begin when all preceding packets are

complete.

acquireFenceScope:2
Determines the scope and type of the memory fence operation applied before the

job is dispatched.

releaseFenceScope:2
Determines the scope and type of the memory fence operation applied after

kernel completion but before the job is completed.

invalidateInstructionCache:1 Acquire fence additionally applies to any instruction cache(s).

invalidateROImageCache:1 Acquire fence additionally applies to any read-only image cache(s).

dimensions:2 Number of dimensions specified in gridSize. Valid values are 1, 2, or 3.

reserved:15

4 uint16_t workgroupSize.x x dimension of work-group (measured in work-items).

6 uint16_t workgroupSize.y y dimension of work-group (measured in work-items).

8 uint16_t workgroupSize.z z dimension of work-group (measured in work-items).

10 uint16_t reserved2

12 uint32_t gridSize.x x dimension of grid (measured in work-items).

16 uint32_t gridSize.y y dimension of grid (measured in work-items).

20 uint32_t gridSize.z z dimension of grid (measured in work-items).

24 uint32_t privateSegmentSizeBytes Total size in bytes of private memory allocation request (per work-item).

28 uint32_t groupSegmentSizeBytes Total size in bytes of group memory allocation request (per work-group).

32 uint64_t kernelObjectAddress
Address of an object in memory that includes an implementation-defined

executable ISA image for the kernel.

40 uint64_t kernargAddress Address of memory containing kernel arguments.

48 uint64_t reserved3

56 uint64_t completionSignal Address of HSA signaling object used to indicate completion of the job.

BARRIER PACKET

 Used for specifying dependences between packets

 HSA will not launch any further packets from this queue until the barrier packet

signal conditions are met

 Used for specifying dependences on packets dispatched from any queue.

 Execution phase completes only when all of the dependent signals (up to five) have

been signaled (with the value of 0).

 Or if an error has occurred in one of the packets upon which we have a

dependence.

© Copyright 2012 HSA Foundation. All Rights Reserved. 35

BARRIER PACKET

© Copyright 2012 HSA Foundation. All Rights Reserved. 36

Offset Format Field Name Description

0 uint32_t

format:8
AQL_FORMAT: 0=INVALID, 1=DISPATCH, 2=DEPEND, others

reserved

barrier:1
If set then processing of packet will only begin when all preceding

packets are complete.

acquireFenceScope:2
Determines the scope and type of the memory fence operation applied

before the job is dispatched.

releaseFenceScope:2
Determines the scope and type of the memory fence operation applied

after kernel completion but before the job is completed.

invalidateInstructionCache:1 Acquire fence additionally applies to any instruction cache(s).

invalidateROImageCache:1 Acquire fence additionally applies to any read-only image cache(s).

dimensions:2 Number of dimensions specified in gridSize. Valid values are 1, 2, or 3.

reserved:15

4 uint32_t reserved2

8 uint64_t depSignal0

Address of dependent signaling objects to be evaluated by the packet

processor.

16 uint64_t depSignal1

24 uint64_t depSignal2

32 uint64_t depSignal3

40 uint64_t depSignal4

48 uint64_t reserved3

56 uint64_t completionSignal Address of HSA signaling object used to indicate completion of the job.

DEPENDENCES

 A user may never assume more than one packet is being executed by an HSA

agent at a time.

 Implications:

 Packets can’t poll on shared memory values which will be set by packets issued

from other queues, unless the user has ensured the proper ordering.

 To ensure all previous packets from a queue have been completed, use the Barrier

bit.

 To ensure specific packets from any queue have completed, use the Barrier packet.

© Copyright 2012 HSA Foundation. All Rights Reserved. 37

HSA QUEUEING, PACKET EXECUTION

PACKET EXECUTION

 Launch phase

 Initiated when launch conditions are met

 All preceeding packets in the queue must have exited launch phase

 If the barrier bit in the packet header is set, then all preceding packets in the

queue must have exited completion phase

 Active phase

 Execute the packet

 Barrier packets remain in Active phase until conditions are met.

 Completion phase

 First step is memory release fence – make results visible.

 CompletionSignal field is then signaled with a decrementing atomic.

© Copyright 2012 HSA Foundation. All Rights Reserved. 39

PACKET EXECUTION

© Copyright 2012 HSA Foundation. All Rights Reserved. 40

Pkt1

Launch

Pkt2

Launch

Pkt1

Execute

Pkt2

Execute

Pkt1

Complete

Pkt3

Launch (barrier=1)

Pkt2

Complete

Pkt3

Execute

Time

Pkt3 stays in Launch

phase until all packets

have completed.

PUTTING IT ALL TOGETHER (FFT)

© Copyright 2012 HSA Foundation. All Rights Reserved. 41

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Barrier Barrier

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

Time

PUTTING IT ALL TOGETHER

© Copyright 2012 HSA Foundation. All Rights Reserved. 42

AQL Pseudo Code

// Send the packets to do the first stage.

aql_dispatch(pkt1);

aql_dispatch(pkt2);

// Send the next two packets, setting the barrier bit so we

//know packets 1 &2 will be complete before 3 and 4 are

//launched.

aql_dispatch_with _barrier_bit(pkt3);

aql_dispatch(pkt4);

// Same as above (make sure 3 & 4 are done before issuing 5

//& 6)

aql_dispatch_with_barrier_bit(pkt5);

aql_dispatch(pkt6);

// This packet will notify us when 5 & 6 are complete)

aql_dispatch_with_barrier_bit(finish_pkt);

QUESTIONS?

© Copyright 2012 HSA Foundation. All Rights Reserved. 43

